Calculatrice du théorème des accroissements finis

Appliquer le théorème des accroissements finis étape par étape

La calculatrice trouvera tous les nombres $$$c$$$ (avec les étapes affichées) qui satisfont les conclusions du théorème des accroissements finis pour la fonction donnée sur l'intervalle donné. Le théorème de Rolle est un cas particulier du théorème des accroissements finis (lorsque $$$f(a)=f(b)$$$).

Enter a function:

Enter an interval: $$$[$$$, $$$]$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find all numbers $$$c$$$ (with steps shown) to satisfy the conclusions of the Mean Value Theorem for the function $$$f=e^{- x} \sin{\left(x \right)}$$$ on the interval $$$\left[0, \pi\right]$$$.

The Mean Value Theorem states that for a continuous and differentiable function $$$f(x)$$$ on the interval $$$[a,b]$$$ there exists such number $$$c$$$ from the interval $$$(a,b)$$$, that $$$f'(c)=\frac{f(b)-f(a)}{b-a}$$$.

First, evaluate the function at the endpoints of the interval:

$$$f \left( \pi \right) = 0$$$

$$$f \left( 0 \right) = 0$$$

Next, find the derivative: $$$f'(c)=- e^{- c} \sin{\left(c \right)} + e^{- c} \cos{\left(c \right)}$$$ (for steps, see derivative calculator).

Form the equation: $$$- e^{- c} \sin{\left(c \right)} + e^{- c} \cos{\left(c \right)}=\frac{\left( 0\right)-\left( 0\right)}{\left( \pi\right)-\left( 0\right)}$$$

Simplify: $$$- e^{- c} \sin{\left(c \right)} + e^{- c} \cos{\left(c \right)}=0$$$

Solve the equation on the given interval: $$$c=\frac{\pi}{4}$$$

Answer: $$$\frac{\pi}{4}\approx 0.785398163397448$$$


Please try a new game Rotatly