Trouvez la somme, la différence, le produit et le quotient de $$$f{\left(x \right)} = x - 2$$$ et $$$g{\left(x \right)} = \frac{1}{x}$$$

La calculatrice calculera la somme, la différence, le produit et le quotient des fonctions $$$f{\left(x \right)} = x - 2$$$ et $$$g{\left(x \right)} = \frac{1}{x}$$$, avec les étapes détaillées.

Calculatrice associée: Calculatrice de composition de fonctions

Facultatif.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Trouvez la somme, la différence, le produit et le quotient de $$$f{\left(x \right)} = x - 2$$$ et $$$g{\left(x \right)} = \frac{1}{x}$$$.

Solution

$$$\left(f + g\right)\left(x\right) = {\color{red}\left(x - 2\right)} + {\color{red}\left(\frac{1}{x}\right)} = \frac{\left(x - 1\right)^{2}}{x}$$$

$$$\left(f - g\right)\left(x\right) = {\color{red}\left(x - 2\right)} - {\color{red}\left(\frac{1}{x}\right)} = x - 2 - \frac{1}{x}$$$

$$$\left(f\cdot g\right)\left(x\right) = {\color{red}\left(x - 2\right)}\cdot {\color{red}\left(\frac{1}{x}\right)} = \frac{x - 2}{x}$$$

$$$\left(\frac{f}{g}\right)\left(x\right) = \frac{{\color{red}\left(x - 2\right)}}{{\color{red}\left(\frac{1}{x}\right)}} = x \left(x - 2\right)$$$

Réponse

$$$\left(f + g\right)\left(x\right) = \frac{\left(x - 1\right)^{2}}{x}$$$A

$$$\left(f - g\right)\left(x\right) = x - 2 - \frac{1}{x}$$$A

$$$\left(f\cdot g\right)\left(x\right) = \frac{x - 2}{x}$$$A

$$$\left(\frac{f}{g}\right)\left(x\right) = x \left(x - 2\right)$$$A


Please try a new game Rotatly