Déterminer $$$\sqrt[3]{i}$$$
Votre saisie
Déterminez $$$\sqrt[3]{i}$$$.
Solution
La forme polaire de $$$i$$$ est $$$\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$ (pour les étapes, voir calculateur de forme polaire).
Selon la formule de Moivre, toutes les racines $$$n$$$-ièmes d'un nombre complexe $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ sont données par $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$.
Nous avons $$$r = 1$$$, $$$\theta = \frac{\pi}{2}$$$ et $$$n = 3$$$.
- $$$k = 0$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 0}{3} \right)} + i \sin{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 0}{3} \right)}\right) = \cos{\left(\frac{\pi}{6} \right)} + i \sin{\left(\frac{\pi}{6} \right)} = \frac{\sqrt{3}}{2} + \frac{i}{2}$$$
- $$$k = 1$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 1}{3} \right)} + i \sin{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 1}{3} \right)}\right) = \cos{\left(\frac{5 \pi}{6} \right)} + i \sin{\left(\frac{5 \pi}{6} \right)} = - \frac{\sqrt{3}}{2} + \frac{i}{2}$$$
- $$$k = 2$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 2}{3} \right)} + i \sin{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 2}{3} \right)}\right) = \cos{\left(\frac{3 \pi}{2} \right)} + i \sin{\left(\frac{3 \pi}{2} \right)} = - i$$$
Réponse
$$$\sqrt[3]{i} = \frac{\sqrt{3}}{2} + \frac{i}{2}\approx 0.866025403784439 + 0.5 i$$$A
$$$\sqrt[3]{i} = - \frac{\sqrt{3}}{2} + \frac{i}{2}\approx -0.866025403784439 + 0.5 i$$$A
$$$\sqrt[3]{i} = - i$$$A