Déterminer $$$\sqrt[4]{1}$$$
Votre saisie
Déterminez $$$\sqrt[4]{1}$$$.
Solution
La forme polaire de $$$1$$$ est $$$\cos{\left(0 \right)} + i \sin{\left(0 \right)}$$$ (pour les étapes, voir calculateur de forme polaire).
Selon la formule de Moivre, toutes les racines $$$n$$$-ièmes d'un nombre complexe $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ sont données par $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$.
Nous avons $$$r = 1$$$, $$$\theta = 0$$$ et $$$n = 4$$$.
- $$$k = 0$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 0}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 0}{4} \right)}\right) = \cos{\left(0 \right)} + i \sin{\left(0 \right)} = 1$$$
- $$$k = 1$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 1}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 1}{4} \right)}\right) = \cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)} = i$$$
- $$$k = 2$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 2}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 2}{4} \right)}\right) = \cos{\left(\pi \right)} + i \sin{\left(\pi \right)} = -1$$$
- $$$k = 3$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 3}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 3}{4} \right)}\right) = \cos{\left(\frac{3 \pi}{2} \right)} + i \sin{\left(\frac{3 \pi}{2} \right)} = - i$$$
Réponse
$$$\sqrt[4]{1} = 1$$$A
$$$\sqrt[4]{1} = i$$$A
$$$\sqrt[4]{1} = -1$$$A
$$$\sqrt[4]{1} = - i$$$A
Please try a new game Rotatly