Lukujen $$$9$$$, $$$30$$$ harmoninen keskiarvo
Aiheeseen liittyvät laskurit: Keskiarvolaskin, Geometrisen keskiarvon laskin
Syötteesi
Laske arvojen $$$9$$$, $$$30$$$ harmoninen keskiarvo.
Ratkaisu
Aineiston harmoninen keskiarvo määritellään kaavalla $$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}$$$, missä $$$n$$$ on arvojen lukumäärä ja $$$x_i, i=\overline{1..n}$$$ ovat itse arvot.
Koska pisteitä on $$$2$$$, $$$n = 2$$$.
Arvojen käänteislukujen summa on $$$\frac{1}{9} + \frac{1}{30} = \frac{13}{90}$$$.
Siten harmoninen keskiarvo on $$$H = \frac{2}{\frac{13}{90}} = \frac{180}{13}$$$.
Vastaus
Harmoninen keskiarvo on $$$\frac{180}{13}\approx 13.846153846153846$$$A.
Please try a new game Rotatly