$$$\left\langle \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}, \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}, e^{t}\right\rangle$$$:n suuruus

Laskin laskee vektorin $$$\left\langle \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}, \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}, e^{t}\right\rangle$$$ suuruuden (pituuden, normin) ja näyttää välivaiheet.
$$$\langle$$$ $$$\rangle$$$
Pilkuilla eroteltu.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä vektorin $$$\mathbf{\vec{u}} = \left\langle \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}, \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}, e^{t}\right\rangle$$$ suuruus (pituus).

Ratkaisu

Vektorin pituus annetaan kaavalla $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

Koordinaattien itseisarvojen neliöiden summa on $$$\left|{\sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}}\right|^{2} + \left|{\sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}}\right|^{2} + \left|{e^{t}}\right|^{2} = 2 e^{2 t} \sin^{2}{\left(t + \frac{\pi}{4} \right)} + 2 e^{2 t} \cos^{2}{\left(t + \frac{\pi}{4} \right)} + e^{2 t}.$$$

Tästä seuraa, että vektorin pituus on $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{2 e^{2 t} \sin^{2}{\left(t + \frac{\pi}{4} \right)} + 2 e^{2 t} \cos^{2}{\left(t + \frac{\pi}{4} \right)} + e^{2 t}} = \sqrt{3} e^{t}.$$$

Vastaus

Suuruus on $$$\sqrt{3} e^{t}\approx 1.732050807568877 e^{t}$$$A.


Please try a new game Rotatly