$$$\left[\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right]$$$:n determinantti
Aiheeseen liittyvä laskin: Kofaktorimatriisilaskin
Syötteesi
Laske $$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right|$$$.
Ratkaisu
2x2-matriisin determinantti on $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.
$$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right| = \left(\cosh{\left(t \right)}\right)\cdot \left(0\right) - \left(1\right)\cdot \left(\sinh{\left(t \right)}\right) = - \sinh{\left(t \right)}$$$
Vastaus
$$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right| = - \sinh{\left(t \right)}$$$A