$$$\left[\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right]$$$:n determinantti

Laskin laskee $$$2$$$x$$$2$$$-kokoisen neliömatriisin $$$\left[\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right]$$$ determinantin vaiheittain.

Aiheeseen liittyvä laskin: Kofaktorimatriisilaskin

A

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Laske $$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right|$$$.

Ratkaisu

2x2-matriisin determinantti on $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right| = \left(\cosh{\left(t \right)}\right)\cdot \left(0\right) - \left(1\right)\cdot \left(\sinh{\left(t \right)}\right) = - \sinh{\left(t \right)}$$$

Vastaus

$$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right| = - \sinh{\left(t \right)}$$$A


Please try a new game Rotatly