$$$\left[\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right]$$$:n determinantti
Aiheeseen liittyvä laskin: Kofaktorimatriisilaskin
Syötteesi
Laske $$$\left|\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right|$$$.
Ratkaisu
2x2-matriisin determinantti on $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.
$$$\left|\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right| = \left(8 - \lambda\right)\cdot \left(8 - \lambda\right) - \left(8\right)\cdot \left(8\right) = \lambda^{2} - 16 \lambda$$$
Vastaus
$$$\left|\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right| = \lambda \left(\lambda - 16\right)$$$A
Please try a new game Rotatly