Osittaisderivointilaskin
Laske osittaisderivaatat vaiheittain
Tämä verkkolaskin laskee funktion osittaisderivaatan ja näyttää välivaiheet. Voit määrittää minkä tahansa integroinnin järjestyksen.
Solution
Your input: find $$$\frac{\partial^{2}}{\partial x^{2}}\left(e^{x y}\right)$$$
First, find $$$\frac{\partial}{\partial x}\left(e^{x y}\right)$$$
Write the function $$$e^{x y}$$$ as a composition of the two functions $$$u=g=x y$$$ and $$$f\left(u\right)=e^{u}$$$.
Apply the chain rule $$$\frac{\partial}{\partial x} \left(f\left(g\right) \right)=\frac{\partial}{\partial u} \left(f\left(u\right) \right) \cdot \frac{\partial}{\partial x} \left(g \right)$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(e^{x y}\right)}}={\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right) \frac{\partial}{\partial x}\left(x y\right)}}$$The derivative of an exponential is $$$\frac{\partial}{\partial u} \left(e^{u} \right)=e^{u}$$$:
$${\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right)}} \frac{\partial}{\partial x}\left(x y\right)={\color{red}{e^{u}}} \frac{\partial}{\partial x}\left(x y\right)$$Return to the old variable:
$$e^{{\color{red}{u}}} \frac{\partial}{\partial x}\left(x y\right)=e^{{\color{red}{x y}}} \frac{\partial}{\partial x}\left(x y\right)$$Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y$$$ and $$$f=x$$$:
$$e^{x y} {\color{red}{\frac{\partial}{\partial x}\left(x y\right)}}=e^{x y} {\color{red}{y \frac{\partial}{\partial x}\left(x\right)}}$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:
$$y e^{x y} {\color{red}{\frac{\partial}{\partial x}\left(x\right)}}=y e^{x y} {\color{red}{1}}$$Thus, $$$\frac{\partial}{\partial x}\left(e^{x y}\right)=y e^{x y}$$$
Next, $$$\frac{\partial^{2}}{\partial x^{2}}\left(e^{x y}\right)=\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\left(e^{x y}\right) \right)=\frac{\partial}{\partial x}\left(y e^{x y}\right)$$$
Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y$$$ and $$$f=e^{x y}$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(y e^{x y}\right)}}={\color{red}{y \frac{\partial}{\partial x}\left(e^{x y}\right)}}$$Write the function $$$e^{x y}$$$ as a composition of the two functions $$$u=g=x y$$$ and $$$f\left(u\right)=e^{u}$$$.
Apply the chain rule $$$\frac{\partial}{\partial x} \left(f\left(g\right) \right)=\frac{\partial}{\partial u} \left(f\left(u\right) \right) \cdot \frac{\partial}{\partial x} \left(g \right)$$$:
$$y {\color{red}{\frac{\partial}{\partial x}\left(e^{x y}\right)}}=y {\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right) \frac{\partial}{\partial x}\left(x y\right)}}$$The derivative of an exponential is $$$\frac{\partial}{\partial u} \left(e^{u} \right)=e^{u}$$$:
$$y {\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right)}} \frac{\partial}{\partial x}\left(x y\right)=y {\color{red}{e^{u}}} \frac{\partial}{\partial x}\left(x y\right)$$Return to the old variable:
$$y e^{{\color{red}{u}}} \frac{\partial}{\partial x}\left(x y\right)=y e^{{\color{red}{x y}}} \frac{\partial}{\partial x}\left(x y\right)$$Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y$$$ and $$$f=x$$$:
$$y e^{x y} {\color{red}{\frac{\partial}{\partial x}\left(x y\right)}}=y e^{x y} {\color{red}{y \frac{\partial}{\partial x}\left(x\right)}}$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:
$$y^{2} e^{x y} {\color{red}{\frac{\partial}{\partial x}\left(x\right)}}=y^{2} e^{x y} {\color{red}{1}}$$Thus, $$$\frac{\partial}{\partial x}\left(y e^{x y}\right)=y^{2} e^{x y}$$$
Therefore, $$$\frac{\partial^{2}}{\partial x^{2}}\left(e^{x y}\right)=y^{2} e^{x y}$$$
Answer: $$$\frac{\partial^{2}}{\partial x^{2}}\left(e^{x y}\right)=y^{2} e^{x y}$$$