Funktion $$$\left(x^{3} + 4\right)^{4} \left(x^{5} + 2\right)^{2}$$$ derivaatta

Laskin laskee funktion $$$\left(x^{3} + 4\right)^{4} \left(x^{5} + 2\right)^{2}$$$ derivaatan logaritmisen derivoinnin avulla ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Derivointilaskin

Jätä tyhjäksi automaattista tunnistusta varten.
Jätä tyhjäksi, jos et tarvitse derivaattaa tietyssä pisteessä.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\frac{d}{dx} \left(\left(x^{3} + 4\right)^{4} \left(x^{5} + 2\right)^{2}\right)$$$.

Ratkaisu

Olkoon $$$H{\left(x \right)} = \left(x^{3} + 4\right)^{4} \left(x^{5} + 2\right)^{2}$$$.

Ota logaritmi yhtälön molemmilta puolilta: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\left(x^{3} + 4\right)^{4} \left(x^{5} + 2\right)^{2}\right)$$$.

Kirjoita oikea puoli uudelleen logaritmien ominaisuuksia käyttäen: $$$\ln\left(H{\left(x \right)}\right) = 4 \ln\left(x^{3} + 4\right) + 2 \ln\left(x^{5} + 2\right)$$$.

Derivoi erikseen yhtälön molemmat puolet: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(4 \ln\left(x^{3} + 4\right) + 2 \ln\left(x^{5} + 2\right)\right)$$$.

Derivoi yhtälön vasen puoli.

Funktio $$$\ln\left(H{\left(x \right)}\right)$$$ on kahden funktion $$$f{\left(u \right)} = \ln\left(u\right)$$$ ja $$$g{\left(x \right)} = H{\left(x \right)}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.

Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

Luonnollisen logaritmin derivaatta on $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Palaa alkuperäiseen muuttujaan:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Näin ollen, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Derivoi yhtälön oikea puoli.

Summan/erotuksen derivaatta on derivaattojen summa/erotus:

$${\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x^{3} + 4\right) + 2 \ln\left(x^{5} + 2\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x^{3} + 4\right)\right) + \frac{d}{dx} \left(2 \ln\left(x^{5} + 2\right)\right)\right)}$$

Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = 4$$$ ja $$$f{\left(x \right)} = \ln\left(x^{3} + 4\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x^{3} + 4\right)\right)\right)} + \frac{d}{dx} \left(2 \ln\left(x^{5} + 2\right)\right) = {\color{red}\left(4 \frac{d}{dx} \left(\ln\left(x^{3} + 4\right)\right)\right)} + \frac{d}{dx} \left(2 \ln\left(x^{5} + 2\right)\right)$$

Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = 2$$$ ja $$$f{\left(x \right)} = \ln\left(x^{5} + 2\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{5} + 2\right)\right)\right)} + 4 \frac{d}{dx} \left(\ln\left(x^{3} + 4\right)\right) = {\color{red}\left(2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right)\right)} + 4 \frac{d}{dx} \left(\ln\left(x^{3} + 4\right)\right)$$

Funktio $$$\ln\left(x^{3} + 4\right)$$$ on kahden funktion $$$f{\left(u \right)} = \ln\left(u\right)$$$ ja $$$g{\left(x \right)} = x^{3} + 4$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.

Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$4 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{3} + 4\right)\right)\right)} + 2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) = 4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{3} + 4\right)\right)} + 2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right)$$

Luonnollisen logaritmin derivaatta on $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$$4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{3} + 4\right) + 2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) = 4 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{3} + 4\right) + 2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right)$$

Palaa alkuperäiseen muuttujaan:

$$2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) + \frac{4 \frac{d}{dx} \left(x^{3} + 4\right)}{{\color{red}\left(u\right)}} = 2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) + \frac{4 \frac{d}{dx} \left(x^{3} + 4\right)}{{\color{red}\left(x^{3} + 4\right)}}$$

Summan/erotuksen derivaatta on derivaattojen summa/erotus:

$$2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) + \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{3} + 4\right)\right)}}{x^{3} + 4} = 2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) + \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(4\right)\right)}}{x^{3} + 4}$$

Vakion derivaatta on $$$0$$$:

$$2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) + \frac{4 \left({\color{red}\left(\frac{d}{dx} \left(4\right)\right)} + \frac{d}{dx} \left(x^{3}\right)\right)}{x^{3} + 4} = 2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) + \frac{4 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{3}\right)\right)}{x^{3} + 4}$$

Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$, kun $$$n = 3$$$:

$$2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) + \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)}}{x^{3} + 4} = 2 \frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right) + \frac{4 {\color{red}\left(3 x^{2}\right)}}{x^{3} + 4}$$

Funktio $$$\ln\left(x^{5} + 2\right)$$$ on kahden funktion $$$f{\left(u \right)} = \ln\left(u\right)$$$ ja $$$g{\left(x \right)} = x^{5} + 2$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.

Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$\frac{12 x^{2}}{x^{3} + 4} + 2 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{5} + 2\right)\right)\right)} = \frac{12 x^{2}}{x^{3} + 4} + 2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{5} + 2\right)\right)}$$

Luonnollisen logaritmin derivaatta on $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$$\frac{12 x^{2}}{x^{3} + 4} + 2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{5} + 2\right) = \frac{12 x^{2}}{x^{3} + 4} + 2 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{5} + 2\right)$$

Palaa alkuperäiseen muuttujaan:

$$\frac{12 x^{2}}{x^{3} + 4} + \frac{2 \frac{d}{dx} \left(x^{5} + 2\right)}{{\color{red}\left(u\right)}} = \frac{12 x^{2}}{x^{3} + 4} + \frac{2 \frac{d}{dx} \left(x^{5} + 2\right)}{{\color{red}\left(x^{5} + 2\right)}}$$

Summan/erotuksen derivaatta on derivaattojen summa/erotus:

$$\frac{12 x^{2}}{x^{3} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{5} + 2\right)\right)}}{x^{5} + 2} = \frac{12 x^{2}}{x^{3} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{5}\right) + \frac{d}{dx} \left(2\right)\right)}}{x^{5} + 2}$$

Vakion derivaatta on $$$0$$$:

$$\frac{12 x^{2}}{x^{3} + 4} + \frac{2 \left({\color{red}\left(\frac{d}{dx} \left(2\right)\right)} + \frac{d}{dx} \left(x^{5}\right)\right)}{x^{5} + 2} = \frac{12 x^{2}}{x^{3} + 4} + \frac{2 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{5}\right)\right)}{x^{5} + 2}$$

Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$, kun $$$n = 5$$$:

$$\frac{12 x^{2}}{x^{3} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{5}\right)\right)}}{x^{5} + 2} = \frac{12 x^{2}}{x^{3} + 4} + \frac{2 {\color{red}\left(5 x^{4}\right)}}{x^{5} + 2}$$

Näin ollen, $$$\frac{d}{dx} \left(4 \ln\left(x^{3} + 4\right) + 2 \ln\left(x^{5} + 2\right)\right) = \frac{10 x^{4}}{x^{5} + 2} + \frac{12 x^{2}}{x^{3} + 4}$$$.

Tästä seuraa, että $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{10 x^{4}}{x^{5} + 2} + \frac{12 x^{2}}{x^{3} + 4}$$$.

Siispä $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\frac{10 x^{4}}{x^{5} + 2} + \frac{12 x^{2}}{x^{3} + 4}\right) H{\left(x \right)} = 2 x^{2} \left(x^{3} + 4\right)^{3} \left(x^{5} + 2\right) \left(11 x^{5} + 20 x^{2} + 12\right).$$$

Vastaus

$$$\frac{d}{dx} \left(\left(x^{3} + 4\right)^{4} \left(x^{5} + 2\right)^{2}\right) = 2 x^{2} \left(x^{3} + 4\right)^{3} \left(x^{5} + 2\right) \left(11 x^{5} + 20 x^{2} + 12\right)$$$A


Please try a new game Rotatly