Osamurtokehitelmän laskin
Löydä osamurtokehitelmä vaihe vaiheelta
Tämä verkkolaskin löytää rationaalifunktion osamurtokehitelmän ja näyttää vaiheet.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{x^{2} - x}$$$
Simplify the expression: $$$\frac{1}{x^{2} - x}=\frac{1}{x \left(x - 1\right)}$$$
The form of the partial fraction decomposition is
$$\frac{1}{x \left(x - 1\right)}=\frac{A}{x}+\frac{B}{x - 1}$$
Write the right-hand side as a single fraction:
$$\frac{1}{x \left(x - 1\right)}=\frac{x B + \left(x - 1\right) A}{x \left(x - 1\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$1=x B + \left(x - 1\right) A$$
Expand the right-hand side:
$$1=x A + x B - A$$
Collect up the like terms:
$$1=x \left(A + B\right) - A$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\- A = 1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=-1$$$, $$$B=1$$$
Therefore,
$$\frac{1}{x \left(x - 1\right)}=\frac{-1}{x}+\frac{1}{x - 1}$$
Answer: $$$\frac{1}{x^{2} - x}=\frac{-1}{x}+\frac{1}{x - 1}$$$