Osamurtokehitelmän laskin
Löydä osamurtokehitelmä vaihe vaiheelta
Tämä verkkolaskin löytää rationaalifunktion osamurtokehitelmän ja näyttää vaiheet.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{9 u^{2} - 16}$$$
Factor the denominator: $$$\frac{1}{9 u^{2} - 16}=\frac{1}{\left(3 u - 4\right) \left(3 u + 4\right)}$$$
The form of the partial fraction decomposition is
$$\frac{1}{\left(3 u - 4\right) \left(3 u + 4\right)}=\frac{A}{3 u - 4}+\frac{B}{3 u + 4}$$
Write the right-hand side as a single fraction:
$$\frac{1}{\left(3 u - 4\right) \left(3 u + 4\right)}=\frac{\left(3 u - 4\right) B + \left(3 u + 4\right) A}{\left(3 u - 4\right) \left(3 u + 4\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$1=\left(3 u - 4\right) B + \left(3 u + 4\right) A$$
Expand the right-hand side:
$$1=3 u A + 3 u B + 4 A - 4 B$$
Collect up the like terms:
$$1=u \left(3 A + 3 B\right) + 4 A - 4 B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} 3 A + 3 B = 0\\4 A - 4 B = 1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=\frac{1}{8}$$$, $$$B=- \frac{1}{8}$$$
Therefore,
$$\frac{1}{\left(3 u - 4\right) \left(3 u + 4\right)}=\frac{\frac{1}{8}}{3 u - 4}+\frac{- \frac{1}{8}}{3 u + 4}$$
Answer: $$$\frac{1}{9 u^{2} - 16}=\frac{\frac{1}{8}}{3 u - 4}+\frac{- \frac{1}{8}}{3 u + 4}$$$