Tekijöihinjakolaskin

Jaa lausekkeet tekijöihin vaiheittain

Laskin yrittää hajottaa tekijöihin minkä tahansa lausekkeen (polynomin, binomin, trinomin, toisen asteen polynomin, rationaalisen, irrationaalisen, eksponentiaalisen, trigonometrisen tai niiden yhdistelmän) ja näyttää vaiheet. Tätä varten lausekkeeseen tehdään ensin joitakin sijoituksia, joilla se muunnetaan polynomiksi, ja sen jälkeen käytetään seuraavia menetelmiä: monomitekijän ulosotto (yhteinen tekijä), toisen asteen polynomien tekijöihinjako, ryhmittely ja uudelleenryhmittely, summan/erotuksen neliö, summan/erotuksen kuutio, neliöiden erotus, kuutioiden summa/erotus sekä rationaalijuurilause.

Enter an expression:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: factor $$$x^{2} + 1 - \frac{6}{x^{2}}$$$.

Steps are not available.

Answer: $$$x^{2} + 1 - \frac{6}{x^{2}}=\frac{\left(x^{2} - 2\right) \left(x^{2} + 3\right)}{x^{2}}$$$.


Please try a new game Rotatly