Ratkaise $$$\cos{\left(2 x \right)} = 0$$$ muuttujan $$$x$$$ suhteen
Syötteesi
Ratkaise yhtälö $$$\cos{\left(2 x \right)} = 0$$$ muuttujan $$$x$$$ suhteen.
Vastaus
Reaalijuuret
$$$x\in\left\{\pi \left(n - \frac{1}{4}\right)\; \middle|\; n \in \mathbb{Z}\right\}\approx \left\{3.141592653589793 n - 0.785398163397448\; \middle|\; n \in \mathbb{Z}\right\}$$$
$$$x\in\left\{\pi \left(n + \frac{1}{4}\right)\; \middle|\; n \in \mathbb{Z}\right\}\approx \left\{3.141592653589793 n + 0.785398163397448\; \middle|\; n \in \mathbb{Z}\right\}$$$
Kompleksijuuret
Vaikuttaa siltä, että kompleksisia juuria ei ole.
Please try a new game Rotatly