Kompleksilukulaskin

Suorita kompleksilukujen laskutoimitukset vaiheittain

Laskin yrittää yksinkertaistaa minkä tahansa kompleksilausekkeen ja näyttää vaiheet. Se suorittaa yhteen-, vähennys-, kerto- ja jakolaskun sekä potenssiin korottamisen, ja löytää myös kompleksiluvun napamuodon, konjugaatin, itseisarvon ja käänteisluvun.

Enter an expression:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: simplify and calculate different forms of $$$81 i$$$

The expression is already simplified.

Polar form

For a complex number $$$a+bi$$$, polar form is given by $$$r(\cos(\theta)+i \sin(\theta))$$$, where $$$r=\sqrt{a^2+b^2}$$$ and $$$\theta=\operatorname{atan}\left(\frac{b}{a}\right)$$$

We have that $$$a=0$$$ and $$$b=81$$$

Thus, $$$r=\sqrt{\left(0\right)^2+\left(81\right)^2}=81$$$

Also, $$$\theta=\operatorname{atan}\left(\frac{81}{0}\right)=\frac{\pi}{2}$$$

Therefore, $$$81 i=81 \cos{\left(\frac{\pi}{2} \right)} + 81 i \sin{\left(\frac{\pi}{2} \right)}$$$

Inverse

The inverse of $$$81 i$$$ is $$$\frac{1}{81 i}$$$

Multiply and divide by $$$i$$$ (keep in mind that $$$i^2=-1$$$):

$$${\color{red}{\left(\frac{1}{81 i}\right)}}={\color{red}{\left(- \frac{i}{81}\right)}}$$$

Hence, $$$\frac{1}{81 i}=- \frac{i}{81}$$$

Conjugate

The conjugate of $$$a + i b$$$ is $$$a - i b$$$: the conjugate of $$$81 i$$$ is $$$- 81 i$$$

Modulus

The modulus of $$$a + i b$$$ is $$$\sqrt{a^{2} + b^{2}}$$$: the modulus of $$$81 i$$$ is $$$81$$$

Answer

$$$81 i=81 i=81.0 i$$$

The polar form of $$$81 i$$$ is $$$81 \cos{\left(\frac{\pi}{2} \right)} + 81 i \sin{\left(\frac{\pi}{2} \right)}$$$

The inverse of $$$81 i$$$ is $$$\frac{1}{81 i}=- \frac{i}{81}\approx - 0.0123456790123457 i$$$

The conjugate of $$$81 i$$$ is $$$- 81 i=- 81.0 i$$$

The modulus of $$$81 i$$$ is $$$81$$$


Please try a new game Rotatly