Jaa $$$x^{3}$$$ luvulla $$$x^{2} - 9$$$
Aiheeseen liittyvät laskurit: Synteettisen jakamisen laskin, Jakokulmalaskin
Syötteesi
Määritä $$$\frac{x^{3}}{x^{2} - 9}$$$ jakokulmaa käyttäen.
Ratkaisu
Kirjoita tehtävä erityisessä muodossa (puuttuvat termit kirjoitetaan nollakertoimilla):
$$$\begin{array}{r|r}\hline\\x^{2}-9&x^{3}+0 x^{2}+0 x+0\end{array}$$$
Vaihe 1
Jaa jaettavan johtotermi jakajan johtotermillä: $$$\frac{x^{3}}{x^{2}} = x$$$.
Kirjoita laskettu tulos taulukon yläosaan.
Kerro se jakajalla: $$$x \left(x^{2}-9\right) = x^{3}- 9 x$$$.
Vähennä saadusta tuloksesta jaettava: $$$\left(x^{3}\right) - \left(x^{3}- 9 x\right) = 9 x$$$.
$$\begin{array}{r|rrrr:c}&{\color{OrangeRed}x}&&&&\\\hline\\{\color{Magenta}x^{2}}-9&{\color{OrangeRed}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{OrangeRed}x^{3}}}{{\color{Magenta}x^{2}}} = {\color{OrangeRed}x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&- 9 x&&{\color{OrangeRed}x} \left(x^{2}-9\right) = x^{3}- 9 x\\\hline\\&&&9 x&+0&\end{array}$$Koska jäännöksen aste on pienempi kuin jakajan aste, olemme valmiit.
Syntynyt taulukko näytetään uudelleen:
$$\begin{array}{r|rrrr:c}&{\color{OrangeRed}x}&&&&\text{Vihjeet}\\\hline\\{\color{Magenta}x^{2}}-9&{\color{OrangeRed}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{OrangeRed}x^{3}}}{{\color{Magenta}x^{2}}} = {\color{OrangeRed}x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&- 9 x&&{\color{OrangeRed}x} \left(x^{2}-9\right) = x^{3}- 9 x\\\hline\\&&&9 x&+0&\end{array}$$Siispä $$$\frac{x^{3}}{x^{2} - 9} = x + \frac{9 x}{x^{2} - 9}$$$.
Vastaus
$$$\frac{x^{3}}{x^{2} - 9} = x + \frac{9 x}{x^{2} - 9}$$$A