Polynomien kertolaskin
Kerro polynomit vaiheittain
Laskin kertoo kaksi polynomia (toisen asteen polynomi, binomi, trinomi jne.) vaiheittain.
Solution
Your input: multiply $$$2 x^{2} - 4 x + 2$$$ by $$$2 x^{2} - 4 x + 2$$$.
To multiply polynomials, multiply each term of the first polynomial by every term of the second polynomial. Then simplify the products and add them. Finally, simplify further if possible.
So, perform the first step:
$$$\left(\color{BlueViolet}{2 x^{2}}\color{Red}{- 4 x}+\color{Purple}{2}\right) \cdot \left(\color{Crimson}{2 x^{2}}\color{Fuchsia}{- 4 x}+\color{Violet}{2}\right)=$$$
$$$=\left(\color{BlueViolet}{2 x^{2}}\right)\cdot \left(\color{Crimson}{2 x^{2}}\right)+\left(\color{BlueViolet}{2 x^{2}}\right)\cdot \left(\color{Fuchsia}{- 4 x}\right)+\left(\color{BlueViolet}{2 x^{2}}\right)\cdot \left(\color{Violet}{2}\right)+$$$
$$$+\left(\color{Red}{- 4 x}\right)\cdot \left(\color{Crimson}{2 x^{2}}\right)+\left(\color{Red}{- 4 x}\right)\cdot \left(\color{Fuchsia}{- 4 x}\right)+\left(\color{Red}{- 4 x}\right)\cdot \left(\color{Violet}{2}\right)+$$$
$$$+\left(\color{Purple}{2}\right)\cdot \left(\color{Crimson}{2 x^{2}}\right)+\left(\color{Purple}{2}\right)\cdot \left(\color{Fuchsia}{- 4 x}\right)+\left(\color{Purple}{2}\right)\cdot \left(\color{Violet}{2}\right)=$$$
Simplify the products:
$$$=4 x^{4}- 8 x^{3}+4 x^{2}+$$$
$$$- 8 x^{3}+16 x^{2}- 8 x+$$$
$$$+4 x^{2}- 8 x+4=$$$
Simplify further:
$$$=4 x^{4} - 16 x^{3} + 24 x^{2} - 16 x + 4$$$
Answer: $$$\left(2 x^{2} - 4 x + 2\right)\cdot \left(2 x^{2} - 4 x + 2\right)=4 x^{4} - 16 x^{3} + 24 x^{2} - 16 x + 4$$$.