Proyección vectorial de $$$\left\langle 1, 1, 3\right\rangle$$$ sobre $$$\left\langle 0, 3, 4\right\rangle$$$
Calculadora relacionada: Calculadora de proyección escalar
Tu aportación
Calcula la proyección vectorial de $$$\mathbf{\vec{v}} = \left\langle 1, 1, 3\right\rangle$$$ sobre $$$\mathbf{\vec{u}} = \left\langle 0, 3, 4\right\rangle$$$.
Solución
La proyección vectorial viene dada por $$$\operatorname{proj}_{\mathbf{\vec{u}}}\left(\mathbf{\vec{v}}\right) = \frac{\mathbf{\vec{v}}\cdot \mathbf{\vec{u}}}{\mathbf{\left\lvert\vec{u}\right\rvert}^{2}} \mathbf{\vec{u}}.$$$
$$$\mathbf{\vec{v}}\cdot \mathbf{\vec{u}} = 15$$$ (para conocer los pasos, consulte calculadora de producto escalar).
$$$\mathbf{\left\lvert\vec{u}\right\rvert} = 5$$$ (para conocer los pasos, consulte calculadora de magnitud vectorial).
Por lo tanto, la proyección vectorial es $$$\operatorname{proj}_{\mathbf{\vec{u}}}\left(\mathbf{\vec{v}}\right) = \frac{15}{5^{2}}\cdot \left\langle 0, 3, 4\right\rangle = \frac{3}{5}\cdot \left\langle 0, 3, 4\right\rangle = \left\langle 0, \frac{9}{5}, \frac{12}{5}\right\rangle$$$ (para conocer los pasos, consulte calculadora de multiplicación escalar vectorial).
Respuesta
La proyección vectorial es $$$\left\langle 0, \frac{9}{5}, \frac{12}{5}\right\rangle = \left\langle 0, 1.8, 2.4\right\rangle$$$A.