Determinante de $$$\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right]$$$

La calculadora hallará el determinante de la matriz cuadrada $$$2$$$x$$$2$$$ $$$\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right]$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de matriz de cofactores

A

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Calcular $$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right|$$$.

Solución

El determinante de una matriz 2x2 es $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = \left(\cos{\left(\theta \right)}\right)\cdot \left(r \cos{\left(\theta \right)}\right) - \left(- r \sin{\left(\theta \right)}\right)\cdot \left(\sin{\left(\theta \right)}\right) = r$$$

Respuesta

$$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = r$$$A


Please try a new game Rotatly