Inversa de $$$\left[\begin{array}{cc}2 & 1\\1 & 3\end{array}\right]$$$
Calculadoras relacionadas: Calculadora de eliminación de Gauss-Jordan, Calculadora de pseudoinversa
Tu entrada
Calcule $$$\left[\begin{array}{cc}2 & 1\\1 & 3\end{array}\right]^{-1}$$$ usando la eliminación de Gauss-Jordan.
Solución
Para encontrar la matriz inversa, forma la matriz aumentada con la matriz identidad y realiza operaciones elementales por filas para convertir la parte izquierda en la identidad. Entonces, la parte derecha será la matriz inversa.
Entonces, forma la matriz aumentada con la matriz identidad:
$$$\left[\begin{array}{cc|cc}2 & 1 & 1 & 0\\1 & 3 & 0 & 1\end{array}\right]$$$
Divide la fila $$$1$$$ por $$$2$$$: $$$R_{1} = \frac{R_{1}}{2}$$$.
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\1 & 3 & 0 & 1\end{array}\right]$$$
Resta la fila $$$1$$$ de la fila $$$2$$$: $$$R_{2} = R_{2} - R_{1}$$$.
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\0 & \frac{5}{2} & - \frac{1}{2} & 1\end{array}\right]$$$
Multiplica la fila $$$2$$$ por $$$\frac{2}{5}$$$: $$$R_{2} = \frac{2 R_{2}}{5}$$$.
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\0 & 1 & - \frac{1}{5} & \frac{2}{5}\end{array}\right]$$$
Resta a la fila $$$1$$$ la fila $$$2$$$ multiplicada por $$$\frac{1}{2}$$$: $$$R_{1} = R_{1} - \frac{R_{2}}{2}$$$.
$$$\left[\begin{array}{cc|cc}1 & 0 & \frac{3}{5} & - \frac{1}{5}\\0 & 1 & - \frac{1}{5} & \frac{2}{5}\end{array}\right]$$$
Hemos terminado. A la izquierda está la matriz identidad. A la derecha está la matriz inversa.
Respuesta
La matriz inversa es $$$\left[\begin{array}{cc}\frac{3}{5} & - \frac{1}{5}\\- \frac{1}{5} & \frac{2}{5}\end{array}\right] = \left[\begin{array}{cc}0.6 & -0.2\\-0.2 & 0.4\end{array}\right].$$$A