Integral de $$$x \cos{\left(x^{2} \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$x \cos{\left(x^{2} \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int x \cos{\left(x^{2} \right)}\, dx$$$.

Solución

Sea $$$u=x^{2}$$$.

Entonces $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (los pasos pueden verse »), y obtenemos que $$$x dx = \frac{du}{2}$$$.

La integral puede reescribirse como

$${\color{red}{\int{x \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$

Recordemos que $$$u=x^{2}$$$:

$$\frac{\sin{\left({\color{red}{u}} \right)}}{2} = \frac{\sin{\left({\color{red}{x^{2}}} \right)}}{2}$$

Por lo tanto,

$$\int{x \cos{\left(x^{2} \right)} d x} = \frac{\sin{\left(x^{2} \right)}}{2}$$

Añade la constante de integración:

$$\int{x \cos{\left(x^{2} \right)} d x} = \frac{\sin{\left(x^{2} \right)}}{2}+C$$

Respuesta

$$$\int x \cos{\left(x^{2} \right)}\, dx = \frac{\sin{\left(x^{2} \right)}}{2} + C$$$A


Please try a new game Rotatly