Integral de $$$w^{2} \ln\left(w\right)$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int w^{2} \ln\left(w\right)\, dw$$$.
Solución
Para la integral $$$\int{w^{2} \ln{\left(w \right)} d w}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sean $$$\operatorname{u}=\ln{\left(w \right)}$$$ y $$$\operatorname{dv}=w^{2} dw$$$.
Entonces $$$\operatorname{du}=\left(\ln{\left(w \right)}\right)^{\prime }dw=\frac{dw}{w}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{w^{2} d w}=\frac{w^{3}}{3}$$$ (los pasos pueden verse »).
Por lo tanto,
$${\color{red}{\int{w^{2} \ln{\left(w \right)} d w}}}={\color{red}{\left(\ln{\left(w \right)} \cdot \frac{w^{3}}{3}-\int{\frac{w^{3}}{3} \cdot \frac{1}{w} d w}\right)}}={\color{red}{\left(\frac{w^{3} \ln{\left(w \right)}}{3} - \int{\frac{w^{2}}{3} d w}\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(w \right)} = w^{2}$$$:
$$\frac{w^{3} \ln{\left(w \right)}}{3} - {\color{red}{\int{\frac{w^{2}}{3} d w}}} = \frac{w^{3} \ln{\left(w \right)}}{3} - {\color{red}{\left(\frac{\int{w^{2} d w}}{3}\right)}}$$
Aplica la regla de la potencia $$$\int w^{n}\, dw = \frac{w^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$\frac{w^{3} \ln{\left(w \right)}}{3} - \frac{{\color{red}{\int{w^{2} d w}}}}{3}=\frac{w^{3} \ln{\left(w \right)}}{3} - \frac{{\color{red}{\frac{w^{1 + 2}}{1 + 2}}}}{3}=\frac{w^{3} \ln{\left(w \right)}}{3} - \frac{{\color{red}{\left(\frac{w^{3}}{3}\right)}}}{3}$$
Por lo tanto,
$$\int{w^{2} \ln{\left(w \right)} d w} = \frac{w^{3} \ln{\left(w \right)}}{3} - \frac{w^{3}}{9}$$
Simplificar:
$$\int{w^{2} \ln{\left(w \right)} d w} = \frac{w^{3} \left(3 \ln{\left(w \right)} - 1\right)}{9}$$
Añade la constante de integración:
$$\int{w^{2} \ln{\left(w \right)} d w} = \frac{w^{3} \left(3 \ln{\left(w \right)} - 1\right)}{9}+C$$
Respuesta
$$$\int w^{2} \ln\left(w\right)\, dw = \frac{w^{3} \left(3 \ln\left(w\right) - 1\right)}{9} + C$$$A