Integral de $$$\sqrt{x - 2} + 1$$$

La calculadora encontrará la integral/antiderivada de $$$\sqrt{x - 2} + 1$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(\sqrt{x - 2} + 1\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(\sqrt{x - 2} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\sqrt{x - 2} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\int{\sqrt{x - 2} d x} + {\color{red}{\int{1 d x}}} = \int{\sqrt{x - 2} d x} + {\color{red}{x}}$$

Sea $$$u=x - 2$$$.

Entonces $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = du$$$.

Por lo tanto,

$$x + {\color{red}{\int{\sqrt{x - 2} d x}}} = x + {\color{red}{\int{\sqrt{u} d u}}}$$

Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{1}{2}$$$:

$$x + {\color{red}{\int{\sqrt{u} d u}}}=x + {\color{red}{\int{u^{\frac{1}{2}} d u}}}=x + {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=x + {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

Recordemos que $$$u=x - 2$$$:

$$x + \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = x + \frac{2 {\color{red}{\left(x - 2\right)}}^{\frac{3}{2}}}{3}$$

Por lo tanto,

$$\int{\left(\sqrt{x - 2} + 1\right)d x} = x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}$$

Añade la constante de integración:

$$\int{\left(\sqrt{x - 2} + 1\right)d x} = x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}+C$$

Respuesta

$$$\int \left(\sqrt{x - 2} + 1\right)\, dx = \left(x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}\right) + C$$$A


Please try a new game Rotatly