Integral de $$$\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}\, dx$$$.

Solución

Sea $$$u=1 - \frac{1}{x}$$$.

Entonces $$$du=\left(1 - \frac{1}{x}\right)^{\prime }dx = \frac{dx}{x^{2}}$$$ (los pasos pueden verse »), y obtenemos que $$$\frac{dx}{x^{2}} = du$$$.

Por lo tanto,

$${\color{red}{\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$

Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{1}{2}$$$:

$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

Recordemos que $$$u=1 - \frac{1}{x}$$$:

$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\left(1 - \frac{1}{x}\right)}}^{\frac{3}{2}}}{3}$$

Por lo tanto,

$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(1 - \frac{1}{x}\right)^{\frac{3}{2}}}{3}$$

Simplificar:

$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3}$$

Añade la constante de integración:

$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3}+C$$

Respuesta

$$$\int \frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}\, dx = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3} + C$$$A


Please try a new game Rotatly