Integral de $$$\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}\, dx$$$.
Solución
Aplica la fórmula de reducción de potencia $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ con $$$\alpha=x$$$:
$${\color{red}{\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{6} d x}}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3}$$$:
$${\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{6} d x}}} = {\color{red}{\left(\frac{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3} d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} + \frac{\sin{\left(x \right)}}{3}\right)d x}}}}{2}$$
Integra término a término:
$$\frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} + \frac{\sin{\left(x \right)}}{3}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x} + \int{\frac{\sin{\left(x \right)}}{3} d x}\right)}}}{2}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$\frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{3} d x}}}}{2} = \frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{3}\right)}}}{2}$$
La integral del seno es $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{6} = \frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{6}$$
Reescribe $$$\sin\left(x \right)\cos\left(2 x \right)$$$ utilizando la fórmula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ con $$$\alpha=x$$$ y $$$\beta=2 x$$$:
$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}}}{2} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{6} + \frac{\sin{\left(3 x \right)}}{6}\right)d x}}}}{2}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = - \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}$$$:
$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{6} + \frac{\sin{\left(3 x \right)}}{6}\right)d x}}}}{2} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\left(\frac{\int{\left(- \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}\right)d x}}{2}\right)}}}{2}$$
Integra término a término:
$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}\right)d x}}}}{4} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\left(- \int{\frac{\sin{\left(x \right)}}{3} d x} + \int{\frac{\sin{\left(3 x \right)}}{3} d x}\right)}}}{4}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{3} d x}}}}{4} = - \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{3}\right)}}}{4}$$
La integral del seno es $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{12} = - \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{12}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}}}{4} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(3 x \right)} d x}}{3}\right)}}}{4}$$
Sea $$$u=3 x$$$.
Entonces $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{3}$$$.
La integral puede reescribirse como
$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{12} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{12}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{12} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{12}$$
La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{36} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{36}$$
Recordemos que $$$u=3 x$$$:
$$- \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left({\color{red}{u}} \right)}}{36} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{36}$$
Por lo tanto,
$$\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}$$
Añade la constante de integración:
$$\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}+C$$
Respuesta
$$$\int \frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}\, dx = \left(- \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}\right) + C$$$A