Integral de $$$\sin{\left(\phi \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sin{\left(\phi \right)}\, d\phi$$$.
Solución
La integral del seno es $$$\int{\sin{\left(\phi \right)} d \phi} = - \cos{\left(\phi \right)}$$$:
$${\color{red}{\int{\sin{\left(\phi \right)} d \phi}}} = {\color{red}{\left(- \cos{\left(\phi \right)}\right)}}$$
Por lo tanto,
$$\int{\sin{\left(\phi \right)} d \phi} = - \cos{\left(\phi \right)}$$
Añade la constante de integración:
$$\int{\sin{\left(\phi \right)} d \phi} = - \cos{\left(\phi \right)}+C$$
Respuesta
$$$\int \sin{\left(\phi \right)}\, d\phi = - \cos{\left(\phi \right)} + C$$$A
Please try a new game Rotatly