Integral de $$$\operatorname{sech}^{2}{\left(u \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \operatorname{sech}^{2}{\left(u \right)}\, du$$$.
Solución
La integral de $$$\operatorname{sech}^{2}{\left(u \right)}$$$ es $$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$$:
$${\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}} = {\color{red}{\tanh{\left(u \right)}}}$$
Por lo tanto,
$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$
Añade la constante de integración:
$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}+C$$
Respuesta
$$$\int \operatorname{sech}^{2}{\left(u \right)}\, du = \tanh{\left(u \right)} + C$$$A