Integral de $$$\sec^{2}{\left(\theta \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sec^{2}{\left(\theta \right)}\, d\theta$$$.
Solución
La integral de $$$\sec^{2}{\left(\theta \right)}$$$ es $$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\tan{\left(\theta \right)}}}$$
Por lo tanto,
$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$
Añade la constante de integración:
$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}+C$$
Respuesta
$$$\int \sec^{2}{\left(\theta \right)}\, d\theta = \tan{\left(\theta \right)} + C$$$A