Integral de $$$\pi \left(- x^{2} + 2 x\right)$$$

La calculadora encontrará la integral/antiderivada de $$$\pi \left(- x^{2} + 2 x\right)$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \pi \left(- x^{2} + 2 x\right)\, dx$$$.

Solución

Simplificar el integrando:

$${\color{red}{\int{\pi \left(- x^{2} + 2 x\right) d x}}} = {\color{red}{\int{\pi x \left(2 - x\right) d x}}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\pi$$$ y $$$f{\left(x \right)} = x \left(2 - x\right)$$$:

$${\color{red}{\int{\pi x \left(2 - x\right) d x}}} = {\color{red}{\pi \int{x \left(2 - x\right) d x}}}$$

Expand the expression:

$$\pi {\color{red}{\int{x \left(2 - x\right) d x}}} = \pi {\color{red}{\int{\left(- x^{2} + 2 x\right)d x}}}$$

Integra término a término:

$$\pi {\color{red}{\int{\left(- x^{2} + 2 x\right)d x}}} = \pi {\color{red}{\left(\int{2 x d x} - \int{x^{2} d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$\pi \left(\int{2 x d x} - {\color{red}{\int{x^{2} d x}}}\right)=\pi \left(\int{2 x d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}\right)=\pi \left(\int{2 x d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}\right)$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ y $$$f{\left(x \right)} = x$$$:

$$\pi \left(- \frac{x^{3}}{3} + {\color{red}{\int{2 x d x}}}\right) = \pi \left(- \frac{x^{3}}{3} + {\color{red}{\left(2 \int{x d x}\right)}}\right)$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\pi \left(- \frac{x^{3}}{3} + 2 {\color{red}{\int{x d x}}}\right)=\pi \left(- \frac{x^{3}}{3} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=\pi \left(- \frac{x^{3}}{3} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$

Por lo tanto,

$$\int{\pi \left(- x^{2} + 2 x\right) d x} = \pi \left(- \frac{x^{3}}{3} + x^{2}\right)$$

Simplificar:

$$\int{\pi \left(- x^{2} + 2 x\right) d x} = \frac{\pi x^{2} \left(3 - x\right)}{3}$$

Añade la constante de integración:

$$\int{\pi \left(- x^{2} + 2 x\right) d x} = \frac{\pi x^{2} \left(3 - x\right)}{3}+C$$

Respuesta

$$$\int \pi \left(- x^{2} + 2 x\right)\, dx = \frac{\pi x^{2} \left(3 - x\right)}{3} + C$$$A


Please try a new game Rotatly