Integral de $$$e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$$.
Solución
Sea $$$u=\sin{\left(x \right)}$$$.
Entonces $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\cos{\left(x \right)} dx = du$$$.
Por lo tanto,
$${\color{red}{\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Recordemos que $$$u=\sin{\left(x \right)}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\sin{\left(x \right)}}}}$$
Por lo tanto,
$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}$$
Añade la constante de integración:
$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}+C$$
Respuesta
$$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = e^{\sin{\left(x \right)}} + C$$$A