Integral de $$$e^{4 \theta}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int e^{4 \theta}\, d\theta$$$.
Solución
Sea $$$u=4 \theta$$$.
Entonces $$$du=\left(4 \theta\right)^{\prime }d\theta = 4 d\theta$$$ (los pasos pueden verse »), y obtenemos que $$$d\theta = \frac{du}{4}$$$.
Por lo tanto,
$${\color{red}{\int{e^{4 \theta} d \theta}}} = {\color{red}{\int{\frac{e^{u}}{4} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{e^{u}}{4} d u}}} = {\color{red}{\left(\frac{\int{e^{u} d u}}{4}\right)}}$$
La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{4} = \frac{{\color{red}{e^{u}}}}{4}$$
Recordemos que $$$u=4 \theta$$$:
$$\frac{e^{{\color{red}{u}}}}{4} = \frac{e^{{\color{red}{\left(4 \theta\right)}}}}{4}$$
Por lo tanto,
$$\int{e^{4 \theta} d \theta} = \frac{e^{4 \theta}}{4}$$
Añade la constante de integración:
$$\int{e^{4 \theta} d \theta} = \frac{e^{4 \theta}}{4}+C$$
Respuesta
$$$\int e^{4 \theta}\, d\theta = \frac{e^{4 \theta}}{4} + C$$$A