Integral de $$$\cos{\left(\frac{t}{a} \right)}$$$ con respecto a $$$t$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \cos{\left(\frac{t}{a} \right)}\, dt$$$.
Solución
Sea $$$u=\frac{t}{a}$$$.
Entonces $$$du=\left(\frac{t}{a}\right)^{\prime }dt = \frac{dt}{a}$$$ (los pasos pueden verse »), y obtenemos que $$$dt = a du$$$.
Por lo tanto,
$${\color{red}{\int{\cos{\left(\frac{t}{a} \right)} d t}}} = {\color{red}{\int{a \cos{\left(u \right)} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=a$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{a \cos{\left(u \right)} d u}}} = {\color{red}{a \int{\cos{\left(u \right)} d u}}}$$
La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$a {\color{red}{\int{\cos{\left(u \right)} d u}}} = a {\color{red}{\sin{\left(u \right)}}}$$
Recordemos que $$$u=\frac{t}{a}$$$:
$$a \sin{\left({\color{red}{u}} \right)} = a \sin{\left({\color{red}{\frac{t}{a}}} \right)}$$
Por lo tanto,
$$\int{\cos{\left(\frac{t}{a} \right)} d t} = a \sin{\left(\frac{t}{a} \right)}$$
Añade la constante de integración:
$$\int{\cos{\left(\frac{t}{a} \right)} d t} = a \sin{\left(\frac{t}{a} \right)}+C$$
Respuesta
$$$\int \cos{\left(\frac{t}{a} \right)}\, dt = a \sin{\left(\frac{t}{a} \right)} + C$$$A