Integral de $$$2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}\, dx$$$.
Solución
Reescribe $$$\sin\left(2 x \right)\sin\left(3 x \right)$$$ utilizando la fórmula $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ con $$$\alpha=2 x$$$ y $$$\beta=3 x$$$:
$${\color{red}{\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\cos{\left(x \right)} - \cos{\left(5 x \right)}\right)d x}}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = 2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}$$$:
$${\color{red}{\int{\left(\cos{\left(x \right)} - \cos{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}\right)d x}}{2}\right)}}$$
Integra término a término:
$$\frac{{\color{red}{\int{\left(2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{2 \cos{\left(x \right)} d x} - \int{2 \cos{\left(5 x \right)} d x}\right)}}}{2}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ y $$$f{\left(x \right)} = \cos{\left(5 x \right)}$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\int{2 \cos{\left(5 x \right)} d x}}}}{2} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\left(2 \int{\cos{\left(5 x \right)} d x}\right)}}}{2}$$
Sea $$$u=5 x$$$.
Entonces $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{5}$$$.
Por lo tanto,
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\cos{\left(5 x \right)} d x}}} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{5}\right)}}$$
La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{5} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{5}$$
Recordemos que $$$u=5 x$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{5} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ y $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$- \frac{\sin{\left(5 x \right)}}{5} + \frac{{\color{red}{\int{2 \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin{\left(5 x \right)}}{5} + \frac{{\color{red}{\left(2 \int{\cos{\left(x \right)} d x}\right)}}}{2}$$
La integral del coseno es $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\sin{\left(5 x \right)}}{5} + {\color{red}{\int{\cos{\left(x \right)} d x}}} = - \frac{\sin{\left(5 x \right)}}{5} + {\color{red}{\sin{\left(x \right)}}}$$
Por lo tanto,
$$\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x} = \sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}$$
Añade la constante de integración:
$$\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x} = \sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}+C$$
Respuesta
$$$\int 2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}\, dx = \left(\sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}\right) + C$$$A