Integral de $$$5880 i n t^{8} - 1$$$ con respecto a $$$t$$$

La calculadora encontrará la integral/primitiva de $$$5880 i n t^{8} - 1$$$ con respecto a $$$t$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(5880 i n t^{8} - 1\right)\, dt$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(5880 i n t^{8} - 1\right)d t}}} = {\color{red}{\left(- \int{1 d t} + \int{5880 i n t^{8} d t}\right)}}$$

Aplica la regla de la constante $$$\int c\, dt = c t$$$ con $$$c=1$$$:

$$\int{5880 i n t^{8} d t} - {\color{red}{\int{1 d t}}} = \int{5880 i n t^{8} d t} - {\color{red}{t}}$$

Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=5880 i n$$$ y $$$f{\left(t \right)} = t^{8}$$$:

$$- t + {\color{red}{\int{5880 i n t^{8} d t}}} = - t + {\color{red}{\left(5880 i n \int{t^{8} d t}\right)}}$$

Aplica la regla de la potencia $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=8$$$:

$$5880 i n {\color{red}{\int{t^{8} d t}}} - t=5880 i n {\color{red}{\frac{t^{1 + 8}}{1 + 8}}} - t=5880 i n {\color{red}{\left(\frac{t^{9}}{9}\right)}} - t$$

Por lo tanto,

$$\int{\left(5880 i n t^{8} - 1\right)d t} = \frac{1960 i n t^{9}}{3} - t$$

Añade la constante de integración:

$$\int{\left(5880 i n t^{8} - 1\right)d t} = \frac{1960 i n t^{9}}{3} - t+C$$

Respuesta

$$$\int \left(5880 i n t^{8} - 1\right)\, dt = \left(\frac{1960 i n t^{9}}{3} - t\right) + C$$$A


Please try a new game Rotatly