Integral de $$$2 - e^{\frac{x}{2}}$$$

La calculadora encontrará la integral/antiderivada de $$$2 - e^{\frac{x}{2}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(2 - e^{\frac{x}{2}}\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(2 - e^{\frac{x}{2}}\right)d x}}} = {\color{red}{\left(\int{2 d x} - \int{e^{\frac{x}{2}} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=2$$$:

$$- \int{e^{\frac{x}{2}} d x} + {\color{red}{\int{2 d x}}} = - \int{e^{\frac{x}{2}} d x} + {\color{red}{\left(2 x\right)}}$$

Sea $$$u=\frac{x}{2}$$$.

Entonces $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (los pasos pueden verse »), y obtenemos que $$$dx = 2 du$$$.

Por lo tanto,

$$2 x - {\color{red}{\int{e^{\frac{x}{2}} d x}}} = 2 x - {\color{red}{\int{2 e^{u} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ y $$$f{\left(u \right)} = e^{u}$$$:

$$2 x - {\color{red}{\int{2 e^{u} d u}}} = 2 x - {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$

La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:

$$2 x - 2 {\color{red}{\int{e^{u} d u}}} = 2 x - 2 {\color{red}{e^{u}}}$$

Recordemos que $$$u=\frac{x}{2}$$$:

$$2 x - 2 e^{{\color{red}{u}}} = 2 x - 2 e^{{\color{red}{\left(\frac{x}{2}\right)}}}$$

Por lo tanto,

$$\int{\left(2 - e^{\frac{x}{2}}\right)d x} = 2 x - 2 e^{\frac{x}{2}}$$

Simplificar:

$$\int{\left(2 - e^{\frac{x}{2}}\right)d x} = 2 \left(x - e^{\frac{x}{2}}\right)$$

Añade la constante de integración:

$$\int{\left(2 - e^{\frac{x}{2}}\right)d x} = 2 \left(x - e^{\frac{x}{2}}\right)+C$$

Respuesta

$$$\int \left(2 - e^{\frac{x}{2}}\right)\, dx = 2 \left(x - e^{\frac{x}{2}}\right) + C$$$A


Please try a new game Rotatly