Integral de $$$1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}$$$ con respecto a $$$t$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}\, dt$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2}$$$ y $$$f{\left(t \right)} = t^{\frac{5}{2}}$$$:
$${\color{red}{\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t}}} = {\color{red}{\left(1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} \int{t^{\frac{5}{2}} d t}\right)}}$$
Aplica la regla de la potencia $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{5}{2}$$$:
$$1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\int{t^{\frac{5}{2}} d t}}}=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\frac{t^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\left(\frac{2 t^{\frac{7}{2}}}{7}\right)}}$$
Por lo tanto,
$$\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t} = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2}$$
Añade la constante de integración:
$$\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t} = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2}+C$$
Respuesta
$$$\int 1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}\, dt = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2} + C$$$A