Integral de $$$\frac{1}{\sqrt[3]{x} + x}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{1}{\sqrt[3]{x} + x}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{1}{\sqrt[3]{x} + x}\, dx$$$.

Solución

Sea $$$u=\sqrt[3]{x}$$$.

Entonces $$$du=\left(\sqrt[3]{x}\right)^{\prime }dx = \frac{1}{3 x^{\frac{2}{3}}} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\frac{dx}{x^{\frac{2}{3}}} = 3 du$$$.

La integral se convierte en

$${\color{red}{\int{\frac{1}{\sqrt[3]{x} + x} d x}}} = {\color{red}{\int{\frac{3 u}{u^{2} + 1} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=3$$$ y $$$f{\left(u \right)} = \frac{u}{u^{2} + 1}$$$:

$${\color{red}{\int{\frac{3 u}{u^{2} + 1} d u}}} = {\color{red}{\left(3 \int{\frac{u}{u^{2} + 1} d u}\right)}}$$

Sea $$$v=u^{2} + 1$$$.

Entonces $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (los pasos pueden verse »), y obtenemos que $$$u du = \frac{dv}{2}$$$.

Por lo tanto,

$$3 {\color{red}{\int{\frac{u}{u^{2} + 1} d u}}} = 3 {\color{red}{\int{\frac{1}{2 v} d v}}}$$

Aplica la regla del factor constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(v \right)} = \frac{1}{v}$$$:

$$3 {\color{red}{\int{\frac{1}{2 v} d v}}} = 3 {\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}$$

La integral de $$$\frac{1}{v}$$$ es $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{3 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Recordemos que $$$v=u^{2} + 1$$$:

$$\frac{3 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{3 \ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$

Recordemos que $$$u=\sqrt[3]{x}$$$:

$$\frac{3 \ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} = \frac{3 \ln{\left(1 + {\color{red}{\sqrt[3]{x}}}^{2} \right)}}{2}$$

Por lo tanto,

$$\int{\frac{1}{\sqrt[3]{x} + x} d x} = \frac{3 \ln{\left(x^{\frac{2}{3}} + 1 \right)}}{2}$$

Añade la constante de integración:

$$\int{\frac{1}{\sqrt[3]{x} + x} d x} = \frac{3 \ln{\left(x^{\frac{2}{3}} + 1 \right)}}{2}+C$$

Respuesta

$$$\int \frac{1}{\sqrt[3]{x} + x}\, dx = \frac{3 \ln\left(x^{\frac{2}{3}} + 1\right)}{2} + C$$$A


Please try a new game Rotatly