Integral de $$$\frac{1}{f \cos{\left(x \right)}}$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$\frac{1}{f \cos{\left(x \right)}}$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{1}{f \cos{\left(x \right)}}\, dx$$$.

Solución

Expresa el coseno en función del seno utilizando la fórmula $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ y luego expresa el seno utilizando la fórmula del ángulo doble $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$${\color{red}{\int{\frac{1}{f \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 f \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$

Multiplica el numerador y el denominador por $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:

$${\color{red}{\int{\frac{1}{2 f \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 f \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$

Sea $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$.

Entonces $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$.

La integral puede reescribirse como

$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 f \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = {\color{red}{\int{\frac{1}{f u} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{f}$$$ y $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\frac{1}{f u} d u}}} = {\color{red}{\frac{\int{\frac{1}{u} d u}}{f}}}$$

La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{f} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{f}$$

Recordemos que $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{f} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{f}$$

Por lo tanto,

$$\int{\frac{1}{f \cos{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{f}$$

Añade la constante de integración:

$$\int{\frac{1}{f \cos{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{f}+C$$

Respuesta

$$$\int \frac{1}{f \cos{\left(x \right)}}\, dx = \frac{\ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)}{f} + C$$$A


Please try a new game Rotatly