Integral de $$$y \ln\left(y\right) + 1$$$

La calculadora encontrará la integral/antiderivada de $$$y \ln\left(y\right) + 1$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(y \ln\left(y\right) + 1\right)\, dy$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(y \ln{\left(y \right)} + 1\right)d y}}} = {\color{red}{\left(\int{1 d y} + \int{y \ln{\left(y \right)} d y}\right)}}$$

Aplica la regla de la constante $$$\int c\, dy = c y$$$ con $$$c=1$$$:

$$\int{y \ln{\left(y \right)} d y} + {\color{red}{\int{1 d y}}} = \int{y \ln{\left(y \right)} d y} + {\color{red}{y}}$$

Para la integral $$$\int{y \ln{\left(y \right)} d y}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sean $$$\operatorname{u}=\ln{\left(y \right)}$$$ y $$$\operatorname{dv}=y dy$$$.

Entonces $$$\operatorname{du}=\left(\ln{\left(y \right)}\right)^{\prime }dy=\frac{dy}{y}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{y d y}=\frac{y^{2}}{2}$$$ (los pasos pueden verse »).

Entonces,

$$y + {\color{red}{\int{y \ln{\left(y \right)} d y}}}=y + {\color{red}{\left(\ln{\left(y \right)} \cdot \frac{y^{2}}{2}-\int{\frac{y^{2}}{2} \cdot \frac{1}{y} d y}\right)}}=y + {\color{red}{\left(\frac{y^{2} \ln{\left(y \right)}}{2} - \int{\frac{y}{2} d y}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(y \right)} = y$$$:

$$\frac{y^{2} \ln{\left(y \right)}}{2} + y - {\color{red}{\int{\frac{y}{2} d y}}} = \frac{y^{2} \ln{\left(y \right)}}{2} + y - {\color{red}{\left(\frac{\int{y d y}}{2}\right)}}$$

Aplica la regla de la potencia $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\frac{y^{2} \ln{\left(y \right)}}{2} + y - \frac{{\color{red}{\int{y d y}}}}{2}=\frac{y^{2} \ln{\left(y \right)}}{2} + y - \frac{{\color{red}{\frac{y^{1 + 1}}{1 + 1}}}}{2}=\frac{y^{2} \ln{\left(y \right)}}{2} + y - \frac{{\color{red}{\left(\frac{y^{2}}{2}\right)}}}{2}$$

Por lo tanto,

$$\int{\left(y \ln{\left(y \right)} + 1\right)d y} = \frac{y^{2} \ln{\left(y \right)}}{2} - \frac{y^{2}}{4} + y$$

Simplificar:

$$\int{\left(y \ln{\left(y \right)} + 1\right)d y} = \frac{y \left(2 y \ln{\left(y \right)} - y + 4\right)}{4}$$

Añade la constante de integración:

$$\int{\left(y \ln{\left(y \right)} + 1\right)d y} = \frac{y \left(2 y \ln{\left(y \right)} - y + 4\right)}{4}+C$$

Respuesta

$$$\int \left(y \ln\left(y\right) + 1\right)\, dy = \frac{y \left(2 y \ln\left(y\right) - y + 4\right)}{4} + C$$$A


Please try a new game Rotatly