Integral de $$$y^{4} - y$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(y^{4} - y\right)\, dy$$$.
Solución
Integra término a término:
$${\color{red}{\int{\left(y^{4} - y\right)d y}}} = {\color{red}{\left(- \int{y d y} + \int{y^{4} d y}\right)}}$$
Aplica la regla de la potencia $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=4$$$:
$$- \int{y d y} + {\color{red}{\int{y^{4} d y}}}=- \int{y d y} + {\color{red}{\frac{y^{1 + 4}}{1 + 4}}}=- \int{y d y} + {\color{red}{\left(\frac{y^{5}}{5}\right)}}$$
Aplica la regla de la potencia $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$\frac{y^{5}}{5} - {\color{red}{\int{y d y}}}=\frac{y^{5}}{5} - {\color{red}{\frac{y^{1 + 1}}{1 + 1}}}=\frac{y^{5}}{5} - {\color{red}{\left(\frac{y^{2}}{2}\right)}}$$
Por lo tanto,
$$\int{\left(y^{4} - y\right)d y} = \frac{y^{5}}{5} - \frac{y^{2}}{2}$$
Añade la constante de integración:
$$\int{\left(y^{4} - y\right)d y} = \frac{y^{5}}{5} - \frac{y^{2}}{2}+C$$
Respuesta
$$$\int \left(y^{4} - y\right)\, dy = \left(\frac{y^{5}}{5} - \frac{y^{2}}{2}\right) + C$$$A