Integral de $$$y \sin{\left(y^{2} \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int y \sin{\left(y^{2} \right)}\, dy$$$.
Solución
Sea $$$u=y^{2}$$$.
Entonces $$$du=\left(y^{2}\right)^{\prime }dy = 2 y dy$$$ (los pasos pueden verse »), y obtenemos que $$$y dy = \frac{du}{2}$$$.
La integral se convierte en
$${\color{red}{\int{y \sin{\left(y^{2} \right)} d y}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
La integral del seno es $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Recordemos que $$$u=y^{2}$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\cos{\left({\color{red}{y^{2}}} \right)}}{2}$$
Por lo tanto,
$$\int{y \sin{\left(y^{2} \right)} d y} = - \frac{\cos{\left(y^{2} \right)}}{2}$$
Añade la constante de integración:
$$\int{y \sin{\left(y^{2} \right)} d y} = - \frac{\cos{\left(y^{2} \right)}}{2}+C$$
Respuesta
$$$\int y \sin{\left(y^{2} \right)}\, dy = - \frac{\cos{\left(y^{2} \right)}}{2} + C$$$A