Integral de $$$x^{n} \left(1 - x\right)$$$ con respecto a $$$x$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int x^{n} \left(1 - x\right)\, dx$$$.
Solución
Esta integral no tiene una forma cerrada:
$${\color{red}{\int{x^{n} \left(1 - x\right) d x}}} = {\color{red}{\frac{x^{n + 1} {{}_{2}F_{1}\left(\begin{matrix} -1, n + 1 \\ n + 2 \end{matrix}\middle| {x} \right)}}{n + 1}}}$$
Por lo tanto,
$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} {{}_{2}F_{1}\left(\begin{matrix} -1, n + 1 \\ n + 2 \end{matrix}\middle| {x} \right)}}{n + 1}$$
Simplificar:
$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)}$$
Añade la constante de integración:
$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)}+C$$
Respuesta
$$$\int x^{n} \left(1 - x\right)\, dx = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)} + C$$$A