Integral de $$$x^{2} - 23$$$

La calculadora encontrará la integral/antiderivada de $$$x^{2} - 23$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(x^{2} - 23\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(x^{2} - 23\right)d x}}} = {\color{red}{\left(- \int{23 d x} + \int{x^{2} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=23$$$:

$$\int{x^{2} d x} - {\color{red}{\int{23 d x}}} = \int{x^{2} d x} - {\color{red}{\left(23 x\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- 23 x + {\color{red}{\int{x^{2} d x}}}=- 23 x + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 23 x + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Por lo tanto,

$$\int{\left(x^{2} - 23\right)d x} = \frac{x^{3}}{3} - 23 x$$

Simplificar:

$$\int{\left(x^{2} - 23\right)d x} = \frac{x \left(x^{2} - 69\right)}{3}$$

Añade la constante de integración:

$$\int{\left(x^{2} - 23\right)d x} = \frac{x \left(x^{2} - 69\right)}{3}+C$$

Respuesta

$$$\int \left(x^{2} - 23\right)\, dx = \frac{x \left(x^{2} - 69\right)}{3} + C$$$A


Please try a new game Rotatly