Integral de $$$\frac{x^{2} \ln\left(3 x\right)}{3}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{x^{2} \ln\left(3 x\right)}{3}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(x \right)} = x^{2} \ln{\left(3 x \right)}$$$:
$${\color{red}{\int{\frac{x^{2} \ln{\left(3 x \right)}}{3} d x}}} = {\color{red}{\left(\frac{\int{x^{2} \ln{\left(3 x \right)} d x}}{3}\right)}}$$
Para la integral $$$\int{x^{2} \ln{\left(3 x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sean $$$\operatorname{u}=\ln{\left(3 x \right)}$$$ y $$$\operatorname{dv}=x^{2} dx$$$.
Entonces $$$\operatorname{du}=\left(\ln{\left(3 x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$ (los pasos pueden verse »).
Por lo tanto,
$$\frac{{\color{red}{\int{x^{2} \ln{\left(3 x \right)} d x}}}}{3}=\frac{{\color{red}{\left(\ln{\left(3 x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{x} d x}\right)}}}{3}=\frac{{\color{red}{\left(\frac{x^{3} \ln{\left(3 x \right)}}{3} - \int{\frac{x^{2}}{3} d x}\right)}}}{3}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ y $$$f{\left(x \right)} = x^{2}$$$:
$$\frac{x^{3} \ln{\left(3 x \right)}}{9} - \frac{{\color{red}{\int{\frac{x^{2}}{3} d x}}}}{3} = \frac{x^{3} \ln{\left(3 x \right)}}{9} - \frac{{\color{red}{\left(\frac{\int{x^{2} d x}}{3}\right)}}}{3}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$\frac{x^{3} \ln{\left(3 x \right)}}{9} - \frac{{\color{red}{\int{x^{2} d x}}}}{9}=\frac{x^{3} \ln{\left(3 x \right)}}{9} - \frac{{\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{9}=\frac{x^{3} \ln{\left(3 x \right)}}{9} - \frac{{\color{red}{\left(\frac{x^{3}}{3}\right)}}}{9}$$
Por lo tanto,
$$\int{\frac{x^{2} \ln{\left(3 x \right)}}{3} d x} = \frac{x^{3} \ln{\left(3 x \right)}}{9} - \frac{x^{3}}{27}$$
Simplificar:
$$\int{\frac{x^{2} \ln{\left(3 x \right)}}{3} d x} = \frac{x^{3} \left(3 \ln{\left(x \right)} - 1 + 3 \ln{\left(3 \right)}\right)}{27}$$
Añade la constante de integración:
$$\int{\frac{x^{2} \ln{\left(3 x \right)}}{3} d x} = \frac{x^{3} \left(3 \ln{\left(x \right)} - 1 + 3 \ln{\left(3 \right)}\right)}{27}+C$$
Respuesta
$$$\int \frac{x^{2} \ln\left(3 x\right)}{3}\, dx = \frac{x^{3} \left(3 \ln\left(x\right) - 1 + 3 \ln\left(3\right)\right)}{27} + C$$$A