Integral de $$$\frac{v}{\sec{\left(v \right)}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{v}{\sec{\left(v \right)}}\, dv$$$.
Solución
Simplificar el integrando:
$${\color{red}{\int{\frac{v}{\sec{\left(v \right)}} d v}}} = {\color{red}{\int{v \cos{\left(v \right)} d v}}}$$
Para la integral $$$\int{v \cos{\left(v \right)} d v}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{d\mu} = \operatorname{u}\operatorname{\mu} - \int \operatorname{\mu} \operatorname{du}$$$.
Sean $$$\operatorname{u}=v$$$ y $$$\operatorname{d\mu}=\cos{\left(v \right)} dv$$$.
Entonces $$$\operatorname{du}=\left(v\right)^{\prime }dv=1 dv$$$ (los pasos pueden verse ») y $$$\operatorname{\mu}=\int{\cos{\left(v \right)} d v}=\sin{\left(v \right)}$$$ (los pasos pueden verse »).
Entonces,
$${\color{red}{\int{v \cos{\left(v \right)} d v}}}={\color{red}{\left(v \cdot \sin{\left(v \right)}-\int{\sin{\left(v \right)} \cdot 1 d v}\right)}}={\color{red}{\left(v \sin{\left(v \right)} - \int{\sin{\left(v \right)} d v}\right)}}$$
La integral del seno es $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$$v \sin{\left(v \right)} - {\color{red}{\int{\sin{\left(v \right)} d v}}} = v \sin{\left(v \right)} - {\color{red}{\left(- \cos{\left(v \right)}\right)}}$$
Por lo tanto,
$$\int{\frac{v}{\sec{\left(v \right)}} d v} = v \sin{\left(v \right)} + \cos{\left(v \right)}$$
Añade la constante de integración:
$$\int{\frac{v}{\sec{\left(v \right)}} d v} = v \sin{\left(v \right)} + \cos{\left(v \right)}+C$$
Respuesta
$$$\int \frac{v}{\sec{\left(v \right)}}\, dv = \left(v \sin{\left(v \right)} + \cos{\left(v \right)}\right) + C$$$A