Integral de $$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$.
Solución
Reescribe el integrando:
$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
Sea $$$u=\sec{\left(x \right)}$$$.
Entonces $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.
Entonces,
$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\int{1 d u}}}$$
Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
Recordemos que $$$u=\sec{\left(x \right)}$$$:
$${\color{red}{u}} = {\color{red}{\sec{\left(x \right)}}}$$
Por lo tanto,
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}$$
Añade la constante de integración:
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}+C$$
Respuesta
$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \sec{\left(x \right)} + C$$$A