Integral de $$$- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=- \tan{\left(1 \right)}$$$ y $$$f{\left(x \right)} = \tan{\left(x \right)} \sec{\left(x \right)}$$$:
$${\color{red}{\int{\left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \tan{\left(1 \right)} \int{\tan{\left(x \right)} \sec{\left(x \right)} d x}\right)}}$$
La integral de $$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ es $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:
$$- \tan{\left(1 \right)} {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = - \tan{\left(1 \right)} {\color{red}{\sec{\left(x \right)}}}$$
Por lo tanto,
$$\int{\left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)d x} = - \tan{\left(1 \right)} \sec{\left(x \right)}$$
Añade la constante de integración:
$$\int{\left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)d x} = - \tan{\left(1 \right)} \sec{\left(x \right)}+C$$
Respuesta
$$$\int \left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)\, dx = - \tan{\left(1 \right)} \sec{\left(x \right)} + C$$$A