Integral de $$$t \cos{\left(t^{2} \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$t \cos{\left(t^{2} \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int t \cos{\left(t^{2} \right)}\, dt$$$.

Solución

Sea $$$u=t^{2}$$$.

Entonces $$$du=\left(t^{2}\right)^{\prime }dt = 2 t dt$$$ (los pasos pueden verse »), y obtenemos que $$$t dt = \frac{du}{2}$$$.

Por lo tanto,

$${\color{red}{\int{t \cos{\left(t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$

Recordemos que $$$u=t^{2}$$$:

$$\frac{\sin{\left({\color{red}{u}} \right)}}{2} = \frac{\sin{\left({\color{red}{t^{2}}} \right)}}{2}$$

Por lo tanto,

$$\int{t \cos{\left(t^{2} \right)} d t} = \frac{\sin{\left(t^{2} \right)}}{2}$$

Añade la constante de integración:

$$\int{t \cos{\left(t^{2} \right)} d t} = \frac{\sin{\left(t^{2} \right)}}{2}+C$$

Respuesta

$$$\int t \cos{\left(t^{2} \right)}\, dt = \frac{\sin{\left(t^{2} \right)}}{2} + C$$$A


Please try a new game Rotatly