Integral de $$$\frac{\sqrt{x^{2} - 1}}{x}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\sqrt{x^{2} - 1}}{x}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\sqrt{x^{2} - 1}}{x}\, dx$$$.

Solución

Sea $$$x=\cosh{\left(u \right)}$$$.

Entonces $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (los pasos pueden verse »).

Además, se sigue que $$$u=\operatorname{acosh}{\left(x \right)}$$$.

El integrando se convierte en

$$$\frac{\sqrt{x^{2} - 1}}{x} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}$$$

Utiliza la identidad $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}}$$$

Suponiendo que $$$\sinh{\left( u \right)} \ge 0$$$, obtenemos lo siguiente:

$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)}}$$$

Entonces,

$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}}$$

Multiplica el numerador y el denominador por un coseno hiperbólico y expresa todo lo demás en términos del seno hiperbólico, usando la fórmula $$$\cosh^2\left(\alpha \right)=\sinh^2\left(\alpha \right)+1$$$ con $$$\alpha= u $$$:

$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}}$$

Sea $$$v=\sinh{\left(u \right)}$$$.

Entonces $$$dv=\left(\sinh{\left(u \right)}\right)^{\prime }du = \cosh{\left(u \right)} du$$$ (los pasos pueden verse »), y obtenemos que $$$\cosh{\left(u \right)} du = dv$$$.

La integral se convierte en

$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$

Reescribe y separa la fracción:

$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$

Integra término a término:

$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$

Aplica la regla de la constante $$$\int c\, dv = c v$$$ con $$$c=1$$$:

$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$

La integral de $$$\frac{1}{v^{2} + 1}$$$ es $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$

Recordemos que $$$v=\sinh{\left(u \right)}$$$:

$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\sinh{\left(u \right)}}} \right)} + {\color{red}{\sinh{\left(u \right)}}}$$

Recordemos que $$$u=\operatorname{acosh}{\left(x \right)}$$$:

$$\sinh{\left({\color{red}{u}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{u}} \right)} \right)} = \sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} \right)}$$

Por lo tanto,

$$\int{\frac{\sqrt{x^{2} - 1}}{x} d x} = \sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}$$

Añade la constante de integración:

$$\int{\frac{\sqrt{x^{2} - 1}}{x} d x} = \sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}+C$$

Respuesta

$$$\int \frac{\sqrt{x^{2} - 1}}{x}\, dx = \left(\sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}\right) + C$$$A


Please try a new game Rotatly