Integral de $$$x \sin{\left(5 \right)} \cos{\left(x \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int x \sin{\left(5 \right)} \cos{\left(x \right)}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\sin{\left(5 \right)}$$$ y $$$f{\left(x \right)} = x \cos{\left(x \right)}$$$:
$${\color{red}{\int{x \sin{\left(5 \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\sin{\left(5 \right)} \int{x \cos{\left(x \right)} d x}}}$$
Para la integral $$$\int{x \cos{\left(x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sean $$$\operatorname{u}=x$$$ y $$$\operatorname{dv}=\cos{\left(x \right)} dx$$$.
Entonces $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (los pasos pueden verse »).
Por lo tanto,
$$\sin{\left(5 \right)} {\color{red}{\int{x \cos{\left(x \right)} d x}}}=\sin{\left(5 \right)} {\color{red}{\left(x \cdot \sin{\left(x \right)}-\int{\sin{\left(x \right)} \cdot 1 d x}\right)}}=\sin{\left(5 \right)} {\color{red}{\left(x \sin{\left(x \right)} - \int{\sin{\left(x \right)} d x}\right)}}$$
La integral del seno es $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\sin{\left(5 \right)} \left(x \sin{\left(x \right)} - {\color{red}{\int{\sin{\left(x \right)} d x}}}\right) = \sin{\left(5 \right)} \left(x \sin{\left(x \right)} - {\color{red}{\left(- \cos{\left(x \right)}\right)}}\right)$$
Por lo tanto,
$$\int{x \sin{\left(5 \right)} \cos{\left(x \right)} d x} = \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right) \sin{\left(5 \right)}$$
Añade la constante de integración:
$$\int{x \sin{\left(5 \right)} \cos{\left(x \right)} d x} = \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right) \sin{\left(5 \right)}+C$$
Respuesta
$$$\int x \sin{\left(5 \right)} \cos{\left(x \right)}\, dx = \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right) \sin{\left(5 \right)} + C$$$A